Tuesday, August 06, 2019

Light Drags Electrons Backward?

As someone who was trained in condensed matter physics, and someone who also worked in photoemmission, light detectors, and photoelectron sources, research work on light interaction with solids, and especially with metallic surfaces, is something I tend to follow rather closely.

I've been reading this article for the past few days and it gets fascinating each time. This is a report on a very puzzling photon drag effect in metals, or in this case, on gold, which is the definitive Drude metal if there is any. What is puzzling is not the photon drag on the conduction electron itself. What is puzzling is that the direction of the photon drag appears to be completely reversed between the effect seen in vacuum versus in ambient air.

A review of the paper can be found here. If you don't have access to PRL, the arXiv version of the paper can be found here. So it appears as if that, when done in vacuum, light appears to push the conduction electrons backward, while when done in air, it pushes electrons forward as expected.

As they varied the angle, the team measured a voltage that largely agreed with theoretical expectations based on the simple light-pushing-electrons picture. However, the voltage they measured was the opposite of that expected, implying that the current flow was in the wrong direction. It’s a weird effect," says Strait. “It’s as if the electrons are somehow managing to flow backward when hit by the light.”
Certainly, surface effects may be at play here. And those of us who have done photoemission spectroscopy can tell you all about surface reconstruction, even in vacuum, when a freshly-cleaved surface literally changes characteristics right in front of your eyes as you continually perform a measurement on it. So I am not surprised by the differences detected between vacuum and in-air measurement.

But what is very puzzling is the dramatic difference here, and why light appears to push the conduction electrons one way in air, and in the opposite direction in vacuum. I fully expect more experiments on this, and certainly more theoretical models to explain this puzzling observation.

This is just one more example where, as we apply our knowledge to the edge of what we know, we start finding new mysteries to solve or to explain. Light interaction with matter is one of the most common and understood phenomena. Light interaction with metals is the basis of the photoelectric effect. Yet, as we push the boundaries of our knowledge, and start to look at very minute details due to its application in, say, photonics, we also start to see the new things that we do not expect.

It is why I always laugh whenever someone thinks that there is an "end of physics". Even on the things that we think we know or things that are very common, if we start to make better and more sensitive measurement, I don't doubt that we will start finding something else that we have not anticipated.


1 comment:

Douglas Natelson said...

Looking at the paper, I'm trying to figure out whether this experimental geometry is vulnerable to photothermoelectric artifacts. They are assuming that the only source of light-induced voltage here is from photon drag, and that's not obvious to me. There can certainly be thermocouple-like effects where the large contacts are placed on the target film, and the amount of energy being dumped into the film by the pulsed laser is not small. Adsorbates and surface modification can alter the seebeck response. Maybe PTE effects are irrelevant. Either way, it would be helpful to know the raw magnitude of the voltages measured in the experiment, which I didn't catch at a quick readthrough, and helpful to know what local temperature rise is expected from the pulsed laser excitation.