Wednesday, March 03, 2021

English And The Language Of Physics

I love reading articles like this where the history of how things become the way they are now is revealed.

This Symmetry article tells the story of how English became the language of physics and why it became dominant in the publication of physics articles and journals. It has almost nothing to do with science, but everything to do with politics, social upheaval, and world events. If Germany didn't have the Nazi coming into power, we probably would be doing physics in German, or if the Soviet Union didn't close off the interactions of non-Soviet scientists, we'd be sharing ideas in Russian as well.


Tuesday, March 02, 2021

Impact of COVID-19 Pandemic On Physicists

We, physicists, are people too (shocking, I know!). The impact of isolation, stay-at-home and work-from-home orders, and the cancellation of experimental work, in-person conferences, workshops and others do have academic, emotional, and psychological impacts on this group of people

This Physics Today article looks at such an impact on the physic community, and how they are dealing with it.

How are YOU dealing with it? Are you back on campus, in your lab, or in your office? Or are you still working from home?


Thursday, February 25, 2021

Combining The Best Of Both Worlds

This is a fascinating and important advancement in the physics of light sources. It seems that it has been shown experimentally how one can get the short, intense light pulses that one gets from a FEL source, and combine it with the repetition that one gets from a synchrotron light source.

Now a Sino-German team has shown that a pattern of pulses can be generated in a synchrotron radiation source that combines the advantages of both systems. The synchrotron source delivers short, intense microbunches of electrons that produce radiation pulses having a laser-like character (as with FELs), but which can also follow each other closely in sequence (as with synchrotron light sources). 

Another review of this work, from Nature where it was published, can be found here.

While this is an important step, it really is a proof-of-principle experiment, and it requires a bit more experimental work to show that this can be viable.

Although this paper represents a crucial step towards generating high-power, small-bandwidth light pulses in a particle accelerator, steady-state microbunching has not yet been demonstrated. Deng et al. have shown that, after one turn in the synchrotron, the microbunched beam can produce coherent radiation. The next challenge is to prove that this scheme can achieve such a feat over many turns. This will be difficult to accomplish experimentally for at least three reasons.

But if this can be demonstrated, a lot of things that are done at a FEL can be performed even more at an "ordinary" synchrotron light source, a facility that is a lot more plentiful.

An important point that I want to point out here is that, these are all "tools" that allow us to study things. Without these tools, we have no ability to experimentally detect, see, or measure things. It enables us to do things that we could not do before. So the advancement in science, technology, medicine, etc, depend on not only having these tools, but also the continual improvement of these tools. Advancement in science requires all of these things to occur to able to explore more difficult and complex ideas and scenarios.

This advancement in accelerator-based light source has nothing to do with high-energy physics. In fact, if you look at the type of applications that are being mentioned, there's nothing about particle physics at all!

.....on an accelerator that could extend the capabilities of these machines even further, potentially yielding applications in a next-generation chip-etching technology called extreme-ultraviolet lithography and an advanced imaging method known as angle-resolved photoemission spectroscopy.

So once again, this is my continuing attempt at trying to make people aware that "accelerators" do not automatically mean "particle collider" or "high energy physics". In fact, the majority of particle accelerators in this world are not involved in high energy physics experiments.


Monday, February 08, 2021

Wonders of Physics Competition

I mentioned about this more than 10 years ago in this thread. I went to UW-Madison and attended the early incarnation of this lecture-room demonstration that became a huge hit with the public. I also had Clint Sprott as an instructor in one of my courses.

Due to COVID-19, the Wonders of Physics show couldn't be held, and probably not in the near future either. To their credit, they are creating a contest instead, where you can submit a 2-minute video of an original demonstration of a physics concept.

So maybe one of you are creative enough to enter this contest. :)


Thursday, January 21, 2021

When Flipped Classroom Flopped?

I've mentioned about flipped classroom before, and that I use this format in a couple of my classes during the remote environment. This article goes the other way and pointed out when and why flipped classroom can flop and be rather ineffective.

I must say that the way this was described, it doesn't quite match what I am doing. While the students do have to watch videos and/or read something before they come to the first class of the week, they have pre-lecture quizzes that tests on whether they did watch the videos or read the material, and had a general understanding of the important ideas. These are graded and become part of their overall course grades. So there is incentive for them to go over the pre-lecture stuff.

Secondly, I don't just quickly dump them into breakout room right at the beginning. We meet twice a week and these are very long class sessions (3 hours) that often comprise of the subject matter and hands-on demos or labs (virtual labs). So I get to go over the important highlights of the subject, do a few examples, shoot off a few polls, give them a few online apps or simulations, and only then do I send them to breakout rooms to work on solving problems. In fact, in many instances, their breakout session is where they get to do their online virtual experiments and get to discuss what they are doing with one another.

I may have mentioned this before, but I did my own end-of-semester survey, and the overwhelming majority of my students liked the pre-lecture material and found them useful. So for me, the version of flipped classroom that I run appears to not be a flop.


Monday, January 11, 2021

Physics Labs At Home

I've made several posts on various virtual experiments that may be done in conjunction with the standard physics courses. While many of these are adequate, nothing beats an actual, physical experiment that requires actual observation and measurement in person.

This paper lists a few experiments that a student may be able to do at home using items that a student may find at home. Since almost everyone having smart phones, there are certainly many activities that can be done using such devices. I've asked my students to use their smartphones to install sky-viewing app to be able to track planets, stars, and other celestial bodies. We have also used various apps that made used of the accelerometer in the phone to measure acceleration. I also have an app called "Gauges" (iOS) that allows you to use your smartphone to be an altimeter, speedometer, barometer, accelerometer (of course), magnometer, and to measure sound level and luminance. I am in the middle of designing a few "in class" (and now, it is "at home") activities using these capabilities.

While virtual experiment is fine for the present unusual situation, I still believe that this is not the same as actually doing the measurement itself and physically performing the experiment. So I'm trying to find activities that a student may be able to do him/herself, or in collaboration with another student if he/she does not have all the necessary equipment. I want to incorporate this as part of the lesson rather than an actual "experiment", so that the student can see the phenomenon that they are studying or about to study.

Have you designed simple at-home physics experiments for your students?


Monday, January 04, 2021

General Physics Experiments Done Remotely

Oooh, yes please!

The problem that I have with online/remote physics courses is that we had to resort to a lot of "simulations" applications to do our "experiments". This is not what an experiment is supposed to be, because there has to be a components of errors and equipment issues that are involved in doing any physical measurement. So these simulations do not reflect reality.

The closest that I've seen so far is the one offered by Pivot Interactives, where you see a series of videos of actual experiments being done, and you get to measure what the person doing the experiment actually measure. It includes all the experimental uncertainties, quirkiness, etc. that the students have to also consider.

But here's another step further that gets the students even closer to being there and doing the actual experiment. I came across this article on UC Santa Barbara's effort to put their Sophomore-level quantum physics course online whereby the students can operate the equipment remotely and perform the actual experiments without being in the lab.

The automization of the quantum mechanical labs allows for students in the Physics 5L class to interact remotely with equipment using an online portal connected to the apparati set up in the lab, according to Fygenson. 

The online portal models the equipment setup, with buttons and knobs in the same order as where they would be on the actual equipment. Students can observe what happens in the lab using cameras aimed at the machines, Fygenson said. So far, the automated lab has been used in Summer 2020 and Fall 2020 and will be used again in Spring 2021.

That's brilliant! But that also involves a lot of money and effort to connect all of those equipment so that they can be operated remotely. Not many schools have that kind of resources and expertise.

I did a quick search and found an earlier report on this with an accompanying video. This gives you a better idea of how this is all done. It looks like from the video, the experiment being demonstrated as an example is the diffraction grating spectroscope looking at emission lines from various sources. This would be a very nice experiment to be done remotely.

Both articles indicated that they are sharing access with other schools, but did not indicate what one should do to get such access. I suppose I will have to contact one of the people listed at the end and see if I can have my students do at least that spectroscope experiment.

Anyone else have done something similar, or have used this?


Thursday, December 31, 2020

E&M Lab Manual for Virtual Classes

This appeared on arXiv on Christmas day. It is a series of lab manual for intro E&M virtual experiment suitable for online courses.

The pdf document itself contains the just the lab instruction. Most of the virtual experiments made use of the applications found in PhET. It is in the abstract that we get a bit of an explanation. The authors claim that:

Student learning outcomes (understand, apply, analyze and evaluate) were studied with detailed lab reports and end of the semester lab-based written exam which confirmed the virtual lab class was as effective as the in-person physical lab class. 

Unfortunately, they provided no evidence or data to support this, at least not in the document.

In my lessons, I try to incorporate the "experiment" as part of the lecture itself. So I had students perform one part of the virtual experiment, and then we discuss the outcome before they write down their observations. Then we move on to the next topic or examples before we come back to doing more of the simulation or measurement. So in many cases, the students encounter both the theory and the observation at almost the same time. The exception being when we did Lenz's and Faraday's law, where I actually gave the students the equipment and instruction, and let them discover for themselves the induced current and how the induced current behave with changing magnetic fields. So they observed the phenomenon first before they learned about the theory.

In any case, this set of lab instruction might be useful to be adapted to my remote classes. We'll see how that goes this coming Spring.


Thursday, December 24, 2020

Happy Holidays and a Better 2021

It has been a crazy year! I think I've posted the least amount of posts in this blog this year than any other year since I started this eons ago. There have been just way too much distraction and pressure coming from all the workload and learning new stuff that I had to just to be an effective instructor. It doesn't help that I think my teaching workload felt like it doubled for remote classes. I'm doing almost twice as much for remote courses than I do for in-person classes. It's crazy!

And I'm sure that students similarly felt a different set of burden and pressure with remote courses. The course feedback that I've received, even though overall they were positive, clearly reflected the frustrations the students have with remote learning and the way different remote courses were ran.

Looking into 2021, I know that we will be totally remote once again for Spring 2021. While I was more prepared to face Fall 2020, I am even more well-prepared for Spring 2021. I know the adjustments that I need to make, and I know things that I need to change. I will also be trying new stuff. Remote labs are something that I continue to struggle with. Honestly, I prefer the official online courses' approach to labs where they send kits to students, and we designed experiments for the students to do at home. However, these courses that I've been teaching are not online courses, but rather face-to-face (f2f) courses that had been forced to be delivered remotely due to the pandemic. So we have no kits. We rely on online simulation as "labs".

But in Spring 2021, I am going to adopt the lab environment of Pivot Interactives. A couple of our faculty members used it extensively this past semester, and they had good things to say about it. I've given it a test drive, and I can see how this may be as close to an actual experiment as it can get without actually physically doing it. Any of you out there use Pivot Interactives? What do you think of it?

Anyhow, with the possibility of the vaccine looming on the horizon for everyone sometime in 2021, there is a glimmer of hope that things will start moving back to "normal", whatever that may look like. So if you are celebrating the holidays at this time of the year, I wish you a wonderful holiday season and a significantly better 20201. Thank you for reading this blog and letting me indulge in spewing my thoughts into the ethereal world of the internet.


Saturday, December 19, 2020

Flipping Your Remote Classroom

I wrote just a few days ago about my effort in continuing my flipped classroom when we went into the remote mode (as opposed to being in an online class mode which is totally run asynchronously). I then ran across this article out of UC-Berkeley about doing the exact same thing.

It definitely seems consistent that for a flipped classroom, there should be a synchronous part, otherwise it doesn't make any sense. And it is nice to see the different variations of a remote flipped classroom, which gives me more ideas on how I can further tweak my own classes.

Do you run a remote flipped classroom? How do you do it?


Friday, December 18, 2020

Intro Physics for Life Sciences

I came across this article out of Michigan State University, about the issue of teaching intro physics to life science majors. I find it rather interesting (amusing?) that this is still an issue being discussed at many large universities when smaller universities and community colleges have long focused on designing such courses for these life sciences/pre-med majors.

Without naming names, I know of 3 major universities in the Chicago area that do NOT have special intro physics courses for such majors. They lump them with the same group of students majoring in physics, chemistry and engineering. So not only are they required to know calculus in those calculus-based intro physics courses, but also they are competing with students whose major are more closely aligned with physics. It is why many of these life-science majors often opted to pay for these courses at city colleges and community colleges and get their transfer credits.

I had written something on this two years ago about teaching physics to life-science/pre-med majors. I am more convinced than ever, just as stated in the article, that you cannot teach this as you normally would to physical science/engineering students. It helps that the course was designed for life-science majors (we used text that are full of examples out of biology, medicine, etc.), but the course objectives and learning outcomes are generic and not specific to these majors. At the curriculum level, there is still a disconnect between the students' need and the official objectives of the course. As an instructor, I am bound by the course objectives and learning outcomes, but of course, I have leeway in implementing those. That means that I try to emphasize more on the topics that are more relevant to their needs and more applicable to life sciences than others. As the article pointed out, while planetary motion and central force problems are part of physics (and part of the course objectives), I do not emphasize it as much as I would in a calc-based physics class.

There can be more refinement and improvement in the design of courses for these students, making them even more relevant to their area of studies. This can only lead to a win-win situation, where the students will actually see the value and connection between physics and biology/medicine, and we can motivate the students more easily on the importance of physics in their fields. I see nothing wrong with that at all.