The accelerator will be what physicists call a B-factory, where electrons and their antiparticles, positrons, will race around two 1.3-kilometre-long rings, then collide and produce heavy B mesons. By studying the way these particles decay, physicists hope to fill some of the gaps in the standard model of physics, such as why there is more matter than antimatter in the Universe, and whether the exotic particles predicted by the theory of supersymmetry really exist.Coupled that with the planned upgrade to Belle II at Japan's KEK, high energy physics experiments are slowly but surely migrating outside of the US. There's not a whole lot to be proud of here if you are concerned about high energy physics in the US.
SuperB will produce 100 times more collision events each year than did the two B factories previously built: the BaBar experiment at the SLAC National Accelerator Laboratory in Menlo Park, California, which shut down in April 2008, and the ongoing Belle experiment at the KEKB accelerator in Tsukuba, Japan. This increased luminosity should allow researchers to study even the rarest of physical phenomena.
Zz.
No comments:
Post a Comment