Showing posts with label Toys. Show all posts
Showing posts with label Toys. Show all posts

Wednesday, March 01, 2017

Lenz's Law Is A "Quirk" Of Physics?

I've never heard of "fidget toys" before till after I read this piece. This one is describing a fidget toy that supposedly has "antigravity" effects that simulates the low gravitational field of the moon and Mars, making the object falls slower. The toy is called Moondrop.

Based around the principle of Lenz’s law — which *deep breath* states that the current induced in a circuit due to a change or motion in a magnetic field will create a field that opposes the charge that produced it — Moondrop is a gravity-defying fidget desk toy that imitates the differential gravitational free fall on Mars and the Moon.

OK, so immediately, there are two issues here:

1. Lenz's law is not a "quirk" of physics, as stated in the title of this report. In fact, it is quite a central phenomenon in physics that is responsible for power generators to create our household electricity! So how is that a "quirk"?

2. Any physics undergraduate can spot the error in the definition given for Lenz's law. Lenz's law is the effect whereby a magnetic field is generated to oppose the CHANGE in the external magnetic field. Maybe there is a typo in the definition given, that it should have been "change" instead of "charge". That one word (or in this case, one letter) change results in an astounding difference in the physics.

If I recall correctly, there are magnetic breaks that use the same principle. I remember reading something on roller coaster rides that made use of such magnetic breaks, so that it ensure that the vehicle can still be safely stopped even when the power goes off.

So the application of Lenz's law is neither that highly unusual, nor is it a quirk of physics.

Or maybe the writer meant a "quark" of physics?

Zz.

Monday, September 07, 2015

The Physics of BB-8 Star Wars Toy

Did you get caught up with the release of the new Star Wars toys and merchandise this past week?

It turns out that one of the toys, the BB-8, is quite astonishing. Rhett Allain has an interesting article on how this toy works.

The last part on inductive charging shouldn't be a puzzle anymore, should it? I've had a tea kettle for at least 6 years that used inductive heating. So inductive charging shouldn't be unusual anymore, I would think.

Still, like he said, this might be a toy that could be a very good physics class demo.

Zz.

Sunday, November 30, 2014

LEGO Particle Accelerator

Hey, if you have time to burn, why not build your own LEGO particle accelerator?



Here's the synopsis accompanying the YouTube video:

This is a working particle accelerator built using LEGO bricks. I call it the LBC (Large Brick Collider). It can accelerate a LEGO soccer ball to just over 12.5 kilometers per hour. Watch the follow up video to see how it works: http://youtu.be/sjRPTDgjM0Q If you would like to see this potentially become an official LEGO set be sure to head over to LEGO Ideas and support the project! https://ideas.lego.com/projects/86253 You can find more information about how it works on my website at http://jkbrickworks.com/lego-particle...


Zz.

Friday, July 18, 2014

The Physics Of A Jumping Articulated Toy

Some time, it is just a pleasure to read about something that isn't too deep, and it is just fun!

This paper on EJP (which is available for free) describes the physics of a jumping kangaroo. The toy makes a complete sommersault as shown in the photo and in the video.

Abstract: We describe the physics of an articulated toy with an internal source of energy provided by a spiral spring. The toy is a funny low cost kangaroo which jumps and rotates. The study consists of mechanical and thermodynamical analyses that make use of the Newton and centre of mass equations, the rotational equations and the first law of thermodynamics. This amazing toy provides a nice demonstrative example of how new physics insights can be brought about when links with thermodynamics are established in the study of mechanical systems.

The authors may want to impart some deeper physical insight into understanding this, which may be true. But I like to take this just on face value. It is just a fun toy and a fun look at how it does what it does.

Zz.

Saturday, December 24, 2011

ATLAS In Lego

The title and content of this news article are a bit inaccurate, but it is still an astounding endeavor to do. A physics professor at the Neils Bohr Institute has gotten his students to build a replica of the ATLAS detector using, get this, LEGO!

Mehlhase has decided to help promote the LHC to students by taking the time to recreate a 1:50 scale model of it using Lego bricks. In total he spent 81 hours creating it, which was split between 48 hours of designing the model on his laptop, and a further 33 hours putting it together.
I'm not sure how this "promotes" the LHC, as if the LHC needs any more promoting lately. And as you can read from the comments, a lot of responses pointed to the fact that what has been created is the ATLAS detector, not the LHC, which is the whole complex itself that consists of several different detectors (physics professors shouldn't make such mistakes, or is this something that was due to the news reporting?).

Not sure if LEGO will start producing LEGO sets specific for building science structures after this.

Zz.

Tuesday, August 05, 2008

Plush Elementary Particles

I really don't know what to make of these. :)

A enterprising individual has decided to market plush toys modeled after the elementary particles. I kid you not (no pun intended).

The Particle Zoo menagerie includes familiar protons, electrons and neutrons — straight from the pages of any school science textbook. But others, such as quarks and neutrinos, are less known. So a label on each toy lists a few facts about the real particle.

Quarks are fundamental building blocks of matter, and physicists have identified six of them and assigned quaint names: Up, Down, Top, Bottom, Strange and Charm. Peasley's plush versions are triangular-shaped and, appropriately, point up or down, while others definitely have "charm" or look "strange" with three eyes.

Neutrinos were proposed by physicists over half a century ago to explain small losses of energy during nuclear reactions, so Peasley designed her neutrinos with black bandit masks over the eyes because they "steal energy."


It appears that many institutions have ordered them for "educational purposes", and they also have been given to a few Nobel Laureates. Still, what educational value can they have? Isn't this like teaching kids the Bohr model of the atom, and then having to make major corrections to that when we teach them quantum mechanics for those lucky enough to actually study quantum mechanics properly? What about those who didn't? Would they continue with the erroneous picture that they were given early in the childhood?

Zz.