Thursday, June 21, 2007

No More Blackholes?

Whoa! This could be big in terms of physics news!

A new theoretical calculation proposes that blackholes cannot exist at all! As reported in Science daily news update (link open only for a limited time):

Physicist Lawrence Krauss and Case Western Reserve colleagues think they have found the answer to the paradox. In a paper accepted for publication in Physical Review D, they have constructed a lengthy mathematical formula that shows, in effect, black holes can't form at all. The key involves the relativistic effect of time, Krauss explains. As Einstein demonstrated in his Theory of General Relativity, a passenger inside a spaceship traveling toward a black hole would feel the ship accelerating, while an outside observer would see the ship slow down. When the ship reached the event horizon, it would appear to stop, staying there forever and never falling in toward oblivion. In effect, Krauss says, time effectively stops at that point, meaning time is infinite for black holes. If black holes radiate away their mass over time, as Hawking showed, then they should evaporate before they even form, Krauss says. It would be like pouring water into a glass that has no bottom. In essence, physicists have been arguing over a trick question for 40 years.

The preprint for this work can be found here.

Now, this is not coming from some fringe physicist either. Lawrence Krauss is one of the most respected physicist around. So this certainly carries quite a bit of weight. Still, there are still arguments against this:

Not so fast, says astronomer Kimberly Weaver of NASA's Goddard Space Flight Center in Greenbelt, Maryland. Although she appreciates the physics the Case Western Reserve team is describing, the problem is "we have never observed any events that would back this up." At the site of the supermassive black hole at the center of the Milky Way, for example, she says astronomers routinely observe what looks like interstellar material disappearing without a trace. Also, no one has yet detected Hawking radiation, which would be prerequisite evidence for black hole evaporation, Weaver says.

In the end, as often is the case, we require more experimental observations.


No comments: