Monday, July 13, 2020

Far-UVC Light Kills Airborne Viruses, And Safe To Humans Too?

First, let me give you the link to the paper that was published in Nature recently.

I actually have 3 separate topics to discuss here all based on this single paper.

The first is the science. UVC is used to kill viruses and sterilized stuff. We know that already. But it is also unsafe to human and we do not want to be exposed to it. But it turns out that far-UVC, having wavelengths in the range of 207-222 nm, is not totally harmful to human. In fact, ...
a regulatory limit as to the amount of 222 nm light to which the public can be exposed, which is 23 mJ/cm^2 per 8-hour exposure
means that humans can be exposed to this range of UVC for a limited amount of time. This is the basis of that research, i.e. using that wavelength and intensity of far-UVC, and see whether it can greatly "inactivate" the amount of viruses carried in airborne aerosols. They found that an exposure of just 25 minutes, very much below the regulatory limit. So there is a way to kill off viruses in airborne aerosols in the same space that human beings are around!

Certainly the implication of this research can be quite important, considering that airborne transmission of the COVID-19 virus is a strong possibility, which is why we are all wearing masks in public. There is now a way to greatly reduce such mode of transmission if this research is verified. The only thing I'm a bit weary about is the health and safety aspect. I know that they cited several sources that seems to show that the far-UVC is harmless to human, and the regulatory limits that have been imposed. Still, I'd like to have this one to be more well-established before I get really excited about it. For example, although the exposure limit is given in per 8-hour doses, how often can someone be exposed to that limit, say, in a month? Is that 8-hour dose limit per day? And certainly, long-term effect needs to be considered in anything of this sort.

But still, I find this result to be very promising, and it certainly is a new piece of information to me that far-UVC is actually not that harmful to humans.

The second aspect of this paper that I want to highlight is to the general public who often do not quite understand the nature of scientific publication. The main reason for scientists to properly publish their work is so that the rest of the community, especially those experts within the same field of study as the work, can scrutinize the work and evaluate its validity. So having something published does not automatically makes it valid. This is important to remember and understand. It requires scrutiny and verification by other experts in the field, and can sometime takes years. Think of how long of a time period from the moment the Higgs mechanism was proposed till its experimental verification at the LHC.

Therefore, it is imperative that a paper contains all the relevant information used to arrive at its conclusion or result. In this case, it is an experimental paper that produces a result. For it to be evaluated by other experts, it must contain all the necessary information. If you look closely at the end, the authors included their methodology, the exact equipment that they used, the experimental setup, the nature of the data analysis used, etc... etc. In other words, everything is as transparent as possible. It allows for someone else to repeat the experiment, and that is a crucial aspect of experimental science - REPRODUCIBILITY. It is something pseudoscience cannot do!

The third and final aspect of this paper is educational. I'm excited at the various values that they used in this paper, because I can already see myself using them in my general physics lessons. I'm already planning on using many of these numbers and asking my students to calculate (i) the amount of power per unit area based on the exposure time, (ii) the energy per photon of 222 nm light, (iii) the number of photons that impinges on a unit area during the exposure time, etc... etc. This will be perfect especially for the general physics course that I have taught that is aimed at life-science/pre-med majors. I always like taking something current, and very relevant to our times, to use as a material in our lessons. The students can immediately see first-hand that what they are learning is, in fact, very useful and has a direct effect on them beyond just wanting a good grade at the end of the semester.

So yes, I'll be holding on to this paper for quite some time.

Zz.

1 comment:

Terry Rudolph (author of "Q is for Quantum") said...

wow, hope it holds up! Are you weary, wary or both? :)