Monday, February 06, 2017

Photons Steal Momentum From Sun's Surface?

We all know that photons carry momentum. But who knew that photons leaving the sun's surface actually may cause the varying rotation of the sun with its radius?

This new paper from PRL makes the confirmation that the sun's surface has a greater drag and a slower angular rotation than the deeper part of the sun. But not only that, it also proposes that this slowdown is due to the loss of momentum when photons are emitted from the plasma on the surface.
Kuhn and his colleagues also developed a model to explain their data. Photons are created in the Sun’s dense core, where the plasma behaves nearly like a solid. As they diffuse outward, they experience plasma that is less dense, faster flowing, and subject to turbulent convection. As the photons interact with the moving plasma, they exchange angular momentum with it. Inside the Sun, the photons scatter so frequently that they lose as much angular momentum as they gain. But in the photosphere, where photons escape the Sun, the plasma-photon momentum transfer results in a net loss of the plasma’s angular momentum, as photons radiate away. The effect on the plasma is a mild braking force, which slows its overall rotation. This braking is most effective at the outer edge of the Sun, where the plasma density is at its lowest.
Those photons! They can create havoc!


No comments: