ATLAS reported the mass of this new boson to be in the mass region of 126 billion electronvolts, and CMS found it to be in the region of 125. In May 2015, the two experiments combined their measurements, refining the Higgs mass closer to 125.09 GeV.
But what is important is the report on the measurement of the coupling strength in the Higgs interactions.
This particular analysis focused on the interaction of the Higgs boson with other particles, known as coupling strength. The combined measurements are more precise than each experiment could accomplish alone, and results establish that the Higgs mechanism grants mass to both the matter and force-carrying particles as predicted by the Standard Model of particle physics.
.
.
In the Standard Model, how strongly the Higgs boson couples to another particle determines that particle’s mass and the rate at which a Higgs boson decays into other particles.
For instance, the Higgs boson couples strongly with the bottom quark and very weakly with the electron; therefore, the bottom quark has a much greater mass than the electron and the Higgs will commonly decay into a bottom quark and its antiquark.
This is why there is still a lot more to be measured and refined in Run 2.
Zz.
No comments:
Post a Comment