Tuesday, January 20, 2015

Macrorealism Violated By Cs Atoms

It is another example where the more they test QM, the more convincing it becomes.

This latest experiment is to test whether superposition truly exist via a very stringent test and applying the Leggett-Garg criteria.

In comparison with these earlier experiments, the atoms studied in the experiments by Robens et al.’s are the largest quantum objects with which the Leggett-Garg inequality has been tested using what is called a null measurement—a “noninvasive” measurement that allows the inequality to be confirmed in the most convincing way possible. In the researchers’ experiment, a cesium atom moves in one of two standing optical waves that have opposite electric-field polarizations, and the atom’s position is measured at various times. The two standing waves can be pictured as a tiny pair of overlapping one-dimensional egg-carton strips—one red, one blue (Fig. 1). The experiment consists of measuring correlation between the atom’s position at different times. Robens et al. first put the atom into a superposition of two internal hyperfine spin states; this corresponds to being in both cartons simultaneously. Next, the team slid the two optical waves past each other, which causes the atom to smear out over a distance of up to about 2 micrometers in a motion known as a quantum walk. Finally, the authors optically excited the atom, causing it to fluoresce and reveal its location at a single site. Knowing where the atom began allows them to calculate, on average, whether the atom moved left or right from its starting position. By repeating this experiment, they can obtain correlations between the atom’s position at different times, which are the inputs into the Leggett-Garg inequality.

You may read the result they got in the report. Also note that you also get free access to the actual paper.

But don't miss the importance of this work, as stated in this review.


Almost a century after the quantum revolution in science, it’s perhaps surprising that physicists are still trying to prove the existence of superpositions. The real motivation lies in the future of theoretical physics. Fledgling theories of macrorealism may well form the basis of the next generation “upgrade” to quantum theory by setting the scale of the quantum-classical boundary. Thanks to the results of this experiment, we can be sure that the boundary cannot lie below the scale at which the cesium atom has been shown to behave like a wave. How high is this scale? A theoretical measure of macroscopicity [8] (see 18 April 2013 Synopsis) gives the cesium atom a modest ranking of 6.8, above the only other object tested with null measurements [5], but far below where most suspect the boundary lies. (Schrödinger’s cat is a 57.) In fact, matter-wave interferometry experiments have already shown interference fringes with Buckminsterfullerene molecules [9], boasting a rating as high as 12. In my opinion, however, we can be surer of the demonstration of the quantumness of the cesium atom because of the authors’ exclusion of macrorealism via null result measurements. The next step is to try these experiments with atoms of larger mass, superposed over longer time scales and separated by greater distances. This will push the envelope of macroscopicity further and reveal yet more about the nature of the relationship between the quantum and the macroworld.


Zz.

No comments: