So, haven't we learned anything from the history of science? The last time someone thought that we knew all there was to know about an area of physics, and all that we could do was simply to make incremental understanding of the area, it was pre-1985 before Mother Nature smacked us right in the face with the discovery of high-Tc superconductors.In their brief Nature letter, Fortunato and co-authors do not speculate on the larger significance of their data, except to say that they are concerned about the future of the Nobel Prizes. But in an unpublished paper called "The Nobel delay: A sign of the decline of Physics?" they suggest that the Nobel time lag "seems to confirm the common feeling of an increasing time needed to achieve new discoveries in basic natural sciences—a somewhat worrisome trend."This comment reminds me of an essay published in Nature a year ago, "After Einstein: Scientific genius is extinct." The author, psychologist Dean Keith Simonton, suggested that scientists have become victims of their own success. "Our theories and instruments now probe the earliest seconds and farthest reaches of the universe," he writes. Hence, scientists may produce no more "momentous leaps" but only "extensions of already-established, domain-specific expertise." Or, as I wrote in The End of Science, "further research may yield no more great revelations or revolutions, but only incremental, diminishing returns."
There is a singular problem with this opinion piece. It equates "fundamental physics" with elementary particle/high energy/cosmology/string/etc. This neglects the fact that (i) the Higgs mechanism came out of condensed matter physics, (ii) "fundamental" understanding of various aspects of quantum field theory and other exotica such as Majorana fermions and magnetic monopole are coming out of condensed matter physics, (iii) the so-called "fundamental physics" doesn't have a monopoly on the physics Nobel prizes. It is interesting that Horgan pointed out the time lapse between the theory and Nobel prizes for superfluidity (of He3), but neglected the short time frame between discovery and the Nobel prize for graphene, or high-Tc superconductors.
As we know more and more, the problems that remain and new ones that popped up become more and more difficult to decipher and observe. Naturally, this will make the confirmation/acceptance up to the level of Nobel prize to be lengthier, both in terms of peer-reviewed evaluation and in time. But this metric does NOT reflect on whether we lack things to discover. Anyone who had done scientific research can tell you that as you try to solve something, other puzzling things pop up! I can guarantee you that the act of trying to solve the Dark Energy and Dark Matter problem will provide us with MORE puzzling observations, even if we solve those two. That has always been the pattern in scientific discovery from the beginning of human beings trying to decipher the world around us! In fact, I would say that we have a lot more things we don't know of now than before, because we have so many amazing instruments that are giving us more puzzling and unexpected things.
Unfortunately, Horgan seems to dismiss whole areas of physics as being unimportant and not "fundamental".
Zz.
2 comments:
The 2001 and 2005 Nobels in physics were each awarded 6 years after the phenomenon was observed. I don't see that mentioned in the discussion, or reflected on the graphs.
Another point to be said is that the field as a whole larger now, but there is still only one Nobel prize awarded yearly. We ought to expect that the queue for receiving prizes lengthens as the candidate pool increases. This could be another reason for the age lag.
Post a Comment