Thursday, November 30, 2017

How Valuable Are Scientists In Politics?

Some time I read a piece that reflects my sentiments almost to a "T". This is one such example.

In the back page section of this months (Nov. 2017) APS News called.... wait for it... "The Back Page", Andrew Zwicker Princeton Plasma Physics Lab also a legislator in the state of New Jersey, US, reflects on the lack of scientists, and scientific methodology in politics and government. I completely agree on this part that I'm quoting here:

As scientists we are, by nature and training, perpetually skeptical yet constantly open to new ideas. We are guided by data, by facts, by evidence to make decisions and eventually come to a conclusion that we immediately question. We strive to understand the "big picture", and we understand the limitations of our conclusions and predictions. Imagine how different the political process would be if everyone in office took a data-driven, scientific approach to creating legislation instead of one based on who can make the best argument for a particular version of the "facts".

Anyone who has followed this blog for a length of time would have noticed my comments many times on this subject, especially in regards to scientists or physicists in the US Congress (right now there's only one left, Bill Foster). I have always poinpointed the major problem with people that we elect, that the public tends to vote for people who agree with their views, rather than individuals who are able to think, who have a clear-cut way of figuring out who to ask or where to look to seek answer. In other words, if a monkey agrees with their view on a number of issues, even that monkey can get elected, regardless of whether that monkey can think rationally.

It is why we have politicians bunkered-in with their views rather than thinking of what is the right or appropriate thing to do based on the facts. This is also why it is so important to teach science, and about science, especially on arriving at an idea or conclusion rationally and analytically, to students who are NOT going to go into science. Law schools should make it compulsory that their students understand science, not for the sake of the material, but rather as a method to think things through.

Unfortunately, I'm skeptical for any of that to happen, which is why the crap that we are seeing in politics right now will never change.

Zz.

Tuesday, November 28, 2017

Employee Used A "Faraday Cage" To Hide His Whereabout

This is one way to be "invisible".

An employee in Perth, Australia, used the metallic package from a snack to shield his device that has a GPS and locate his whereabouts. He then went golfing... many times, during his work hours.

The tribunal found that the packet was deliberately used to operate  as an elaborate “Faraday cage” - an enclosure which can block electromagnetic fields - and prevented his employer knowing his location. The cage set-up was named after English scientist Michael Faraday, who in 1836 observed that a continuous covering of conductive material could be used to block electromagnetic fields.

Now, if it works for his device, it should work to shield our credit cards as an RFID shield, don't you think? There's no reason to buy those expensive wallet or credit-card envelopes. Next time you have a Cheetos or potato chips, save those bags and wrap your wallet with them! :)

Zz.

Friday, November 17, 2017

Reviews of "The Quantum Labyrinth"

Paul Halpern's story of "when Feynman met Wheeler" in his book "The Quantum Labyrinth" has two interesting reviews that you can read (here and here). In the history of physics and human civilization, the meeting of the minds of these two giants in the world of physics must be rank up there with other partnerships, such as Lennon and McCartney, Hewlett and Packard, peanut butter and jelly, etc....

I have not read the book yet, and probably won't get to it till some time next year. But if you have read it, I'd like to hear what you think of it.

Zz.

Can A Simple Physics Error Cast Doubt On A da Vinci Painting?

It seems that the recent auction of a Leonardo da Vinci painting (for $450 million no less) has what everyone seems to call a physics flaw. It involves the crystal orb that is being held in the painting.

A major flaw in the painting — which is the only one of da Vinci's that remains in private hands — makes some historians think it's a fake. The crystal orb in the image doesn't distort light in the way that natural physics does, which would be an unusual error for da Vinci.

My reaction when I first read this is that, it is not as if da Vinci was painting this live with the actual Jesus Christ holding the orb. So either he made a mistake, or he knew what he was doing and didn't think it would matter. I don't think this observation is enough to call the painting a fake.

Still, it may make a good class example in Intro Physics optics.

Zz.

Saturday, November 11, 2017

Lorentz Gamma Factor

Don Lincoln has another video related to Relativity. This time, he's diving into more details on the Lorentz Gamma factor. At the beginning of the video, he's referring to another video he made on the misleading concept of relativistic mass, which I've linked to.



Zz.

Thursday, November 09, 2017

SLAC's LCLS Upgrade and What It Might Mean To You

Just in case you don't know what's going on at SLAC's LCLS, and the upcoming upgrade to bring it to LCLS-II, here's a CNET article meant for the general public to tell what what they have been up to, and what they hope to accomplish with the upgrade.

Keep in mind that LCLS is a "light source", albeit it is a very unique, highly-intense x-ray light source. SLAC is also part of the DOE's US National Laboratories, which include Brookhaven, Fermilab, Berkeley, Argonne, Los Alamos, .... etc.

Zz.

Friday, November 03, 2017

Muons, The Little Particles That Could

These muons are becoming the fashionable particles of the moment.

I mentioned at the beginning of this year (2017) of the use of muon tomography to image the damaged core at Fukushima. Now, muons are making headlines in two separate applications.

The first is the use of cosmic muons imaging that discovered hidden chambers inside Khufu's Pyramid at Giza. The second is more use of muons to probe the status of nuclear waste safely.

The comment I wrote in the first link still stands. We needed to know the fundamental properties of muons FIRST before we could actually use then to all these applications. And that fundamental knowledge came from high-energy/elementary particle physics.

So chalk this up to another application of such an esoteric field of study.

Zz.

Tuesday, October 31, 2017

Are University Admission Biased?

This is a rather interesting Minute Physics video. It is tackling what is known as the Simpson Paradox. What is interesting is that it is applying it to an example where on first glance, there appears to be no form of statistical bias, but when viewed another way, it seems that there is.



What is interesting here is that several years ago, I mentioned of an AIP study examining universities in the US that have very small number of physics faculty and how many of those that do not have a single female faculty member. The result found that, statistically, this is what is expected based on the number of female physics PhDs, meaning that we can't simply accuse these schools (and hiring of female physicist in general) of bias against female physicists. This Minute Physics video appears to provide an illustration of what is expected statistically without imposing even any bias to the sample.

Again, I'm not saying that female physicists and faculty members do not face unfair or more challenges in their career when compared to male physicists. But illustrations such as these should also be considered so that we tackle problems that are real and meaningful and not chase something is not the source of the problem.

Zz.

Thursday, October 26, 2017

Google Science Journal App

I've asked and discussed about various apps that I've come across that I thought might be either interesting or useful, or both, for someone in science, and in physics in particular. I still haven't found a data analysis and graphing app for my iPad that rivals, say, the Origin or any other full-blown computer program of that type. But I'll continue to search and keep an eye out for one.

I read about this "Google Science Journal" app before, but it appears that they've made significant improvements to it. It is available on both iOS and Android (of course). This app looks like it might be useful to high school science students, and maybe even in intro physics classes as part of a demo.

I'll probably install it on my phone and play with it for a bit to see what it actually can do. But if you have had some experience with this app, or better yet, have used it as part of a lesson, I definitely want to hear about it.

Zz.

Tuesday, October 24, 2017

How Does Proton Radiation Therapy Work?

Here's a video from Don Lincoln on a physicist's view of proton radiation therapy in attacking a tumor.



If you want a more detailed and technical information on proton therapy, you may access a more in-depth paper here. This, btw, is another example of the application of accelerator physics and elementary particle physics, in case you didn't know.

Zz.

Want To Read Stephen Hawking's Thesis?

I saw a news report that Cambridge is finally making Stephen Hawking's thesis available online. So I clicked the link to look at it, and nothing happened. Went back a few minutes later, clicked on it again, and nothing happened.

Turned out that all the news announcements on this has crashed the Cambridge's website due to the overwhelming request to want to see this! :)

In honor of Open Access Week, the University of Cambridge on Monday put the 1966 PhD thesis, "Properties of Expanding Universes," on its open access repository. Shortly after it went live, requests to view the research crashed the website.
As of Monday afternoon, the main research page was reachable after several minutes, but nothing on the page was.
So if you are planning on checking it out, good luck!
Zz.

Saturday, October 14, 2017

Lazy Reporting And Taking Way Too Much Credit

It is not surprising that whenever a major discovery is made or a major award is given, as many people and institutions want to ride the coattail and be a part of it. I understand that.

But sometime, it is stretching it a bit waaaay too much, especially when the report itself sounds very lazy and weak.

The recent announcement of the Nobel Prize in physics being awarded to 3 figures who are instrumental in the discovery of gravitational waves seem to be one such case. I stumble across this news article out of what I believe is a local newspaper called the "Gonzales Weekly Citizen". The headline said:

LSU scientists win Nobel Prize in Physics

Of course, that perked my interest since I didn't know any of the 3 men who were awarded the prize are known to be associated with LSU (Louisiana State University, for those who are not familiar with this).

Now, it seems that the reporter is playing fast and loose. Rainer Weiss is listed as an "adjunct professor" in the LSU physics dept. Now, we all know that an adjunct professor is nothing more than a "contractor". That person is not considered as a staff member, but rather hired on a per-term basis or based on a contract. In most cases, the person is probably associated by another institution rather than the one where he/she is an adjunct professor of.

In fact, in this case, Rainer Weiss is more well-known as being associated with MIT than anywhere else. It is what is listed in all the news report for this award. In fact, if you look at the Nobel Prize page that announced this award, the profile on Weiss says:


Affiliation at the time of the award: LIGO/VIRGO Collaboration, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

No mention of LSU. In fact, the LIGO project itself is a consortium of many universities and it is jointly administered by MIT and Caltech. One of the facilities may be in Louisiana, and LSU is involved in the project, but that's about it. They should be proud of their contribution to the project, but to over play it to this level is not quite right.

So this news report is misleading at best!

But that's not all! There's a certain level of laziness in the reporting.

LSU adjunct professor and MIT professor Emeritus Rainer Weiss and California professor Emeritus Kip Thorne are co-founders of the collaboration. Weiss won half of the prize, and the other half went to the California Institute of Technology professors involved.

I'm sorry, but they could not even bother to mention Barry Barish name? He's being relegated to being part of the "... California Institute of Technology professors involved." REALLY!


As I said, rather lazy reporting.

Zz.

Wednesday, October 11, 2017

Electron Is Still A Point Particle

There have been experiments to measure the electric dipole moment of an electron, if any, which would indicate that (i) an electron has an internal structure and (ii) consequently it isn't a point particle that we have been assuming within QED. So far, all the experiments have not found any, and each measurement continues to increase the precision of the previous measurement.

Chalk this one up to follow the same trend[1]. This time, they are using a different technique to measure the electron dipole moment by using trapped molecular ions. The result of the experiment is an even more precise measurement, and lowered the upper bound of the dipole moment by several orders of magnitude when compared to the previous result.

Electron is still a spherical cow!

Zz.

[1] W.B. Cairncross et al., Phys. Rev. Lett. v.119, p.153001 (2017).

Tuesday, October 03, 2017

Why You Can't Go Faster Than Light

Don Lincoln tackles our speed limit.



Zz.

2017 Physics Nobel Prize Goes To Gravitational Wave Discovery

To say that this is a no-brainer and no surprise are an understatement.

The 2017 Nobel Prize in Physics goes to 3 central figures that made LIGO possible and the eventual discovery of gravitational wave in 2015.

The Nobel Prize in Physics 2017 was divided, one half awarded to Rainer Weiss, the other half jointly to Barry C. Barish and Kip S. Thorne "for decisive contributions to the LIGO detector and the observation of gravitational waves".

Congratulations to all of them!

Zz.

Friday, September 22, 2017

Common Mistakes By Students In Intro Physics

Rhett Allain has listed 3 common mistakes and misunderstanding done by student in intro kinematics physics courses.

I kinda agree with all of them, and I've seen them myself. In fact, when I teach "F=ma" and try to impress upon them its validity, I will ask them that if it is true, why do you need to keep your foot on the gas pedal to keep the vehicle moving at constant speed while driving? This appears to indicate that "F" produces a constant "speed", and thus, "a=0".

Tackling this is important, because the students already have a set of understanding of how the world around the works, whether correctly or not. It needs to be tackled head-on. I tackled this also in dealing with current where we calculate the drift velocity of conduction electrons. The students discover that the drift velocity is excruciatingly slow. So then I ask them that if the conduction electrons move like molasses, why does it appear that when I turn the switch on, the light comes on almost instantaneously?

Still, if we are nitpicking here, I have a small issue with the first item on Allain's list:

What happens when you have a constant force on an object? A very common student answer is that a constant force on an object will make it move at a constant speed—which is wrong, but it sort of makes sense.

Because he's using "speed" and not "velocity", it opens up a possibility of a special case of a central force, or even a centripetal force, in a circular motion where the object has a net force acting on it, but its speed remains the same. Because the central force is always perpendicular to the motion of the particle, it imparts no increase in speed, just a change in direction. So yes, the velocity changes, but the magnitude of the velocity (the speed) does not. So the misconception here isn't always wrong.

Zz.

Thursday, September 21, 2017

Gravity As A Result Of Random Quantum Fluctuation?

There are too many "buzzwords" in this entire thing, but it might still be an interesting reading for some people.

There is a new report on the possibility that gravity might not be an interaction within QFT framework, but rather as a result of quantum fluctuation.

The average of these fluctuations is a gravitational field that is consistent with Newton’s theory of gravity. In this model, gravity is born out of quantum mechanics, but is not in itself a quantum-mechanical force. It is what scientists call “semiclassical.” Until this theory is tested further, it will remain a semi-solution; while the idea does predict certain known phenomena, it doesn’t yet account for Einstein’s theory of general relativity.

This latest report is due to a preprint uploaded to ArXiv.

Now, I can understand New Scientist reporting on something like this, because they have the tendency to report on sensational and unverified science news, but for PBS/NOVA webpage to jump onto this still-unpublished work? That's surprising.

Of course, I'm complicit on this as well since I'm reporting it here. I'm going to make sure I won't highlight something like this again in the future until it has at least appear in a peer-reviewed publication, not just in New Scientist and the likes.

Zz.

Tuesday, September 19, 2017

Amazon's CAPTCHA Patent Proposal Tests Your Physics Understanding

... well, more like your physics INTUITION on what should happen next.

It seems that Amazon has file a patent application that uses a physics engine to generate scenarios to see if you are a real person or a bot.

The company has filed a patent application for a new CAPTCHA method which would show you a 3D simulation of something about to happen to a person or object. That something would involve Newtonian physics — perhaps an item is about to fall on someone, or a ball is about to roll down a slope. The test would then show you several "after" scenarios and, if you pick the correct option, you've passed the test.
.
.
.
The idea is that, because you are a human, you have an "intuitive" understanding of what would happen next in these scenarios. But computers need much more information about the scene and "might be unable to solve the test", according to the application.

Definitely interesting, although in Fig. 3B shown in the article, both Fig (A) and Fig (B) might be possible depending on the ambiguity of the drawing.

But this brings me an important point that I've been telling my students in intro physics classes when they dealt with mechanics. We all ALREADY KNOW many of the things that will happen in cases like this. We do not need to learn physics or to be enrolled in a physics class to know the qualitative description of the dynamics of these systems. So we are not teaching you about something you are not familiar with.

What a formal physics lesson will do is to describe these things more accurately, i.e. in a QUANTITATIVE manner. We won't simply say "Oh, the ball will roll down that inclined plane." Rather, we will describe the motion of the ball mathematically, and we will be able to say how long the ball will take to each the bottom, at what speed, etc...etc. In other words, we don't just say "What goes up must come down", but we will also say "When and where it will come down". This is what separates physics (and science) from hand-waving, everyday conversation.

All of us already have an intuitive understanding of the physical systems around us. That's why Amazon can make such a CAPTCHA test for everyone. A physics lessons simply formalize that understanding in a more accurate and non-ambiguous fashion.

Zz.

Friday, September 15, 2017

Bell's Theorem - The Venn Diagram Paradox

Minute Physics is tackling Bell's theorem, with limited success.



It would have been nice if they included Malus' Law description in here, because that is what we knew before QM came around, and that is what we teach students in intro physics.

In any case, I still find it difficult to follow, especially if you didn't pay that much attention to the part when they are doing the counting. They went over this a bit too quickly to let it sink in.

Maybe your brain works faster than mine and can keep up.

Zz.

Sunday, September 10, 2017

Is Relativistic Mass Real?

I've mentioned about this issue several times on here. In this post, I've linked to a reference, and also a link to Lev Okun's paper in another post, that both debunked the concept of relativistic mass, and why it should not be used.

Unfortunately, as a physics instructor, I still see texts teaching this concept, and I have to work around it, telling the students the caveat on why what they should be cautious in what they are reading. It isn't easy, but I'd rather say something about it than let the students walk out of my class not knowing that this idea of "relativistic mass" is not what it has been popularly made out.

So I'm delighted that Don Lincoln has a video addressing this issue as well.



He explains it quite clearly, and also why we still sometime teach this concept to students in intro classes (unfortunately). Yes, I can understand why, but I still don't like it if it can be avoided without sacrificing the pedagogical reason for it.

It's a good video if you are still wondering what the fuss is all about.

Zz.