Saturday, September 29, 2018

Record 1200 Tesla, and then, BANG!

Hey, would you sacrifice your equipment just so you can break the record on the strongest magnetic field created in a lab? These people would.

Speaking with IEEE Spectrum, lead researcher Shojiro Takeyama explained that his team was hoping to achieve a magnetic field that reached 700 Tesla (the unit of measurement for gauging the strength of a magnetic field). At that level, the generator would likely self destruct, but when pushed to its limits the machine actually achieved a strength of 1,200 Tesla.

To put that in perspective, an MRI machine — which is the most intense indoor magnetic field most people would ever encounter — comes in at just three Tesla. Needless to say, the researchers’ machine didn’t survive the test, but it did land them in the record books.



Honestly, I don't think I can get away with doing that!

Zz.

Wednesday, September 26, 2018

How Fast Is The Photoelectric Effect?

Every student who studied modern physics in an undergraduate General Physics course would have encountered the photoelectric effect. It is a phenomenon that has a special place in the history of physics, and the theoretical description of this phenomenon gave Einstein his Nobel Prize.

So one would think that this is a done deal already, and we should know all there is to know about it. In some sense, we do. We know enough about it that we have expanded this phenomenon to be included in a more general phenomenon called photoemission. We use this phenomenon to study many things, including band structure of materials. So it is very well-known.

Yet, as with so many things in physics, the more we study it, the more we want to know the minute details of it. In this case, the current study is on how fast an electron is emitted from a material once light impinges upon it. In other words, from the moment a photon is absorbed, how quickly does the electron is liberated from the material?

This is not that easy to answer because, well, one can already guess at how would one determine (i) the exact time when one photon is absorbed into a material, and (ii) the exact time when an electron  is liberated due to that absorbed photon. On top of that, this may be a very fast process, so how does one measure a time scale that is almost instantaneous?

The authors of this latest paper[1] came up with a very ingenious method to determine this, and in the process, they have elucidated even more the various stages of what is involved in the photoelectric effect. But before we continue, let's get one thing very clear here.

The "photoelectric effect" that we know and love, and the one that Millikan studied, is the phenomenon whereby UV light is shown onto a metallic surface (cathode). We know now that this is an emission process of electrons coming from the metal's conduction band. This is important because, as this new study shows, this process is different than the emission from core levels (i.e. not from the continuous conduction band). Those of us who have done photoemission work using both UV and x-rays can attest to such differences.

The experiment in this report was done on a tungsten surface, or more specifically, W(110) surface. The hard UV light that was used allowed them to get photoemission from the conduction band and a core-level state.

What they found was that from the time that a photon is absorbed to the moment that an electron is emitted, the time for the process for a conduction electron is ~ 45 as, while for a core-level electron is ~100 as.

{as = attosecond = 1 x 10^(-18) second}

So the emission from core-level takes more than twice as long to occur. In their analysis, the authors stressed this conclusion:

These findings highlight that proper accounting for the initial creation, origin, transport and scattering of electrons is imperative for the proper description of the photoelectric effect.

Bill Spicer's 3-step model of photoemission process certainly highlighted the fact that it isn't a simple process. This paper not only reinforce that, but also included the effect of surface states in the influence to emission time and thus, possibly influencing other properties of the emitted photoelectron. 

There are many things in physics which we know a lot of. But these are also areas in which we continue to dig deeper to find out even more. There will never be a point where we know everything there is to know, even with established ideas and phenomena.

Zz.

[1] M. Ossiander et al., Nature 561, 374 (2018). https://www.nature.com/articles/s41586-018-0503-6
Summary of this work can be found here.

Tuesday, September 25, 2018

Ghost Imaging Using Relativistic Electrons

No, we're doing imaging ghosts here.

For the first time, ghost imaging using electrons have been accomplished.[1]

Optical ghost imaging using light has been previously accomplished.

Optical ghost imaging is a useful tool that can spatially resolve the characteristics of a sample using just a single-pixel detector – rather than the multipixel arrays found in digital cameras. The technique involves splitting a beam of light into a pair of correlated beams called the signal and reference beams. The signal beam strikes the sample before hitting the single-pixel detector. The reference beam goes directly to a conventional, multipixel detector. By measuring the correlation between the intensities of the beams as they hit their respective detectors, an image of the sample can be reconstructed using data from the multipixel detector, without directly imaging the sample itself.

In this new report, this technique has been accomplished using relativistic electrons. Their motivation for applying this technique using electrons is given in the text of the paper:

Potential benefits of applying ghost imaging methods to electron-based imaging systems include the possibility to minimize image acquisition time and to reduce the dose delivered to the sample and the resulting sample damage. In addition, electron ghost imaging can be useful for experimental methods (e.g. electron energy-loss spectroscopy, or cathodoluminescence) for which spatially resolved detectors either do not exist or severely increase the complexity of the setup. A special case is the growing field of time-resolved electron scattering where the use of multi-MeV, ultrashort relativistic electron sources for both imaging and diffraction has pushed temporal resolution to the ps and fs regimes. Employing structured illumination (i.e. ghost imaging) schemes on ultrashort electron beams offers the possibility to better manage the space charge effects in the electron column.

This is another opportunity for me to point out that this is a research work coming out of accelerator physics.

Zz.

[1] S. Li et al., Phys. Rev. Lett. 121, 114801 (2018). http://www.slac.stanford.edu/pubs/slacpubs/17250/slac-pub-17314.pdf

Sunday, September 16, 2018

Want To Located The Accelerometer In Your Smartphone?

Rhett Allain has a simple, fun rotational physics experiment that you can perform on your smartphone to locate the position of the accelerometer in that device, all without opening it.

Your smart phone has a bunch of sensors in it. One of the most common is the accelerometer. It's basically a super tiny mass connected with springs (not actual springs). When the phone accelerates in a particular direction, some of these springs will get compressed in order to make the tiny test mass also accelerate. The accelerometer measures this spring compression and uses that to determine the acceleration of the phone. With that, it will know if it is facing up or down. It also can estimate how far you move and use this along with the camera to find out where real world objects are, using ARKit.

So, we know there is a sensor in the phone—but where is it located? I'm not going to take apart my phone; everyone knows I'll never get it back together after that. Instead, I will find out the location by moving the phone in a circular path. Yes, moving in a circle is a type of acceleration.

I'll let you read the article to know what he did, and what you can do yourself. 

Now, the only thing left is to verify the result. Someone needs to open an iPhone 7 and confirm the location of the accelerometer (do we even know what it looks like in such a device?). Any volunteers? :)

Zz.

Friday, September 14, 2018

Bismuthates Superconductors Appear To Be Conventional

A lot of people overlooked the fact that during the early days of the discovery of high-Tc superconductors, there was another "family" of superconductors beyond just the cuprates (i.e. those compounds having copper-oxide layers). These compounds are called bismuthates, where instead of having copper-oxide layers, they have bismuth-oxide layers. Otherwise, their crystal structures are similar to the cuprates.

They didn't make that much of a noise at that time because Tc for this family of material tends to be lower than the cuprates. And, even back then, there were already evidence that the bismuthates superconductors might be "boring", i.e. the results that they have produced looked like they might be a conventional superconductor. This is supported by several experiments, including a tunneling experiment[1] that showed that the phonon density of states obtained from tunneling data matches that of the density of states obtained from neutron scattering.

Now it seems that there is more evidence that the bismuthates are conventional BCS superconductors, and it comes from ARPES experiment[2]. There have been no ARPES measurement done on bismuthates before this because it had been a serious challenge to get a single-crystal of this compound large enough to perform such an experiment. But obviously, large-enough single-crystals have been synthesized.

In this latest experiment, they look at the band structure of this compound, and extract, among others, the strong electron-phonon coupling that matches the superconducting gap. This strongly indicates that phonons are the "glue" in the superconducting mechanism for this compound.

So this adds another piece of the puzzle for the whole mystery of the origin of superconductivity in the cuprates. Certainly, having similar layered crystal structure does not discount being a conventional superconductor. Yet, the cuprates have very different behavior when we perform tunneling and ARPES experiments, and they certainly have higher Tc's.

The mystery continues.

Zz.

[1] Q. Huang et al. Nature v347, p369 (1990).
[2] CHP. Wen et al. PRL  121, 117002 (2018). https://arxiv.org/abs/1802.10507

Thursday, September 13, 2018

Human Eye Can Detect Cosmic Radiation

Well, not in the way you think.

I recently found this video of an appearance of astronaut Scott Kelly on The Late Show with Stephen Colbert. During this segment, he talked about the fact that when he went to sleep on the Space Station and closed his eyes, he occasionally detected flashes of light. He attributed it to the cosmic radiation  passing through his body, and his eyes in particular.

Check out the video at minute 3:30



My first inclination is to say that this is similar to how we detect neutrinos, i.e. the radiation particles interact with the medium in his yes, either the vitreous or the medium that makes up the lens, and this interaction causes the ejection of relativistic electron and subsequently, a Cerenkov radiation. The Cerenkov radiation is then detected by the eye.

Of course, there are other possibilities, such as the cosmic particle causes an excitation of an atom or molecules when they collided, and this then caused a light emission. But Scott Kelly mentioned that these flashes appeared like fireworks. So my guess here is that it is more of a very short cascade of events, and probably the Cerenkov light scenario.

This, BTW, is almost how we detect neutrinos, especially at Super Kamiokande and all the neutrino detectors around the world. Neutrinos come into the detector, and those that interact with the medium inside the detector (water, for example), cause the emission of relativistic electrons that move faster than the speed of light inside the medium. This creates the Cerenkov radiation, and typically, the light is blueish white. It's the same glow that you see if you look in a pool of fuel rods in a nuclear reactor.

So there! You can detect something with your eyes closed!

Zz.