OK, I found a physics education paper that studied Intro Physics students understanding (or misunderstanding) of the concept of velocity, acceleration, and force in one dimension. One of the questions they used to test a student's understanding is actually quite interesting in the sense that it DOES appear to test how well a student actually understands the difference between velocity, acceleration, and force. So I thought, before I give the link to the paper, that I will ask the question here. If you are a student, or even just someone trying to learn physics, see if you can answer this:
A car is on a hill and the direction of its acceleration is uphill. Which statement best describes the motion of the car at that time?
A. it is moving uphill
B. it is moving downhill
C. it is not moving
D. both A and B are possible
E. both A and C are possible
F. A, B, and C are possible
Try it.
This is one example where one needs to understand something beyond just a superficial level. Many people will tend to pick the obvious answer because, well, it's obvious. But to understand why the correct answer is the correct answer will require an intimate knowledge of what velocity, acceleration, and force mean, and their relationships to each other beyond just a hand-waving understanding.
I'll give this a few days, and I'll edit this post to link to the paper in question. If you happen to have read the paper already, or better yet, one of the authors, please hold off your comment and let others try it first. Please post your answer on here, but
I will hold off on releasing all comments with answers till AFTER a few days, so that no one will be influenced by any of the submitted responses. Comments that do not contain the answers will be released as usual.
EDIT: I'm getting a few responses already. Again, just a reminder, I'll keep the comments that contain answers moderated for now. I'll release those in a few days when I post a link to the paper. So if you don't see your comment appearing after you submit it, you'll know why.
EDIT (12/20/2011): I've posted the answer and the source paper that this question came from. Thanks to all those who participated and posted their answers.
Zz.